Indexed by:
Abstract:
基于神经网络所具有的灵活强大的学习能力,提出了一种用多层前馈神经网络实现的控制器.该控制器通过学习系统的逆动力学特性,能由系统反馈回的输入/输出状态及未来期望输出值直接得到应加在系统输入端的控制量.另外,通过引入系统的神经网络正向模型,可将系统输出端的误差经网络逐层反传,在线调节神经网络控制器的权重,从而使控制器具有自学习能力,以适应控制对象参数的变化,确保良好的控制效果.
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
ISSN: 0254-0037
Year: 2000
Issue: 2
Volume: 26
Page: 102-106
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 4
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: