Indexed by:
Abstract:
Face anti-spoofing based on deep learning achieved good accuracy recently. However, deep learning model has no explicit mathematical presentation. Therefore, it is not clear about how the model works effectively. In this paper, we estimate the regions in face image, which are sensitive in deep learning based anti-spoofing algorithms. We first generate the adversarial examples from two different gradient-based methods. Then we analyze the distribution of the gradient and perturbations on the adversarial examples. And next we obtain the sensitive regions and evaluate the contribution of these regions to classification performance. By analyzing the sensitive regions, it could be observed that the CNN based anti-spoofing algorithms are sensitive to rich detailed regions and illumination. These observations are helpful to design an effective face anti-spoofing algorithm.
Keyword:
Reprint Author's Address:
Email:
Source :
BIOMETRIC RECOGNITION, CCBR 2018
ISSN: 0302-9743
Year: 2018
Volume: 10996
Page: 331-339
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: