Indexed by:
Abstract:
As a high-resolution, non-destructive internal structure three-dimensional imaging technology, digital holographic microscopy tomography can provide advanced and safe detection technologies and research tools for the development of high-tech such as life sciences, clinical medicine, and new materials. In order to reduce the reconstruction time and improve the quality of reconstruction, the compressive sensing theory is applied to holographic imaging. Compressive holography technology can not only achieve the tomographic reconstruction of objects from a small amount of holographic data, but also solve the problem of crosstalk between the layer and the layer and the elimination of noise in the tomographic reconstruction process, and the effect is particularly obvious. In this paper, the dynamic compressive sensing theory is applied to the field of three-dimensional digital holographic microscopy, which is different from the fixed sampling method used in the general compressive holographic imaging. It achieved fast 3D digital holography and improved axial resolution. We obtained holographic tomography images at a sampling rate of 6.25%, doubling the axial resolution witho ut loss of reproduction image resolution.
Keyword:
Reprint Author's Address:
Email:
Source :
THREE-DIMENSIONAL IMAGE ACQUISITION AND DISPLAY TECHNOLOGY AND APPLICATIONS
ISSN: 0277-786X
Year: 2018
Volume: 10845
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: