Indexed by:
Abstract:
Identifying functional modules in protein-protein interaction (PPI) networks is fundamental to understand cellular organization, processes, and functions. As an emerging evolutionary computational technology, swarm intelligence approaches are now becoming a new research hotspot in identifying functional modules. This paper proposes a new computational approach based on bacterial biological mechanisms for functional module detection in PPI networks (called as BBM-FMD). In BBM-FMD, each bacterium is first initialized to a candidate module partition by a random walk behavior. Then four biological mechanisms of bacteria including chemotaxis, conjugation, reproduction, and elimination and dispersal are simulated to iteratively search for better protein module partitions. At last, two post-processing steps are carried out to refine the obtained module partition. The experimental results on two PPI datasets demonstrate the superior performance of BBM-FMD in detecting functional modules compared with several other algorithms.
Keyword:
Reprint Author's Address:
Source :
2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM)
ISSN: 2156-1125
Year: 2016
Page: 318-323
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5