Indexed by:
Abstract:
A new approach was proposed by combing Ensemble Empirical Mode Decomposition (EEMD) algorithm and Back Propagation (BP) neural network for detection of gear through transmission noise analysis. Then feature values of the feature signals are calculated. The feature values which have a great difference for different defect types are chosen to build an eigenvector. BP neural network is used to train and learn on the eigenvector for recognition of gear defects intelligently. In this study, a comparative experiment has been performed among normal gears, cracked gears and eccentric gears with fifteen sets of different gears. Experimental results indicate that the proposed method can detect gear defect features carried by the transmission noise effectively.
Keyword:
Reprint Author's Address:
Email:
Source :
NINTH INTERNATIONAL SYMPOSIUM ON PRECISION ENGINEERING MEASUREMENTS AND INSTRUMENTATION
ISSN: 0277-786X
Year: 2015
Volume: 9446
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: