Indexed by:
Abstract:
Under the condition of multi-databases, a novel algorithm of facial expression recognition was proposed to improve the robustness of traditional semi-supervised methods dealing with individual differences in facial expression recognition. First, the regions of interest of facial expression images were determined by face detection and facial expression features were extracted using Linear Discriminant Analysis. Then Transfer Learning Adaptive Boosting (TrAdaBoost) algorithm was improved as semi-supervised learning method for multi-classification. The results show that the proposed method has stronger robustness than the traditional methods, and improves the facial expression recognition rate from multiple databases.
Keyword:
Reprint Author's Address:
Email:
Source :
ACTIVE MEDIA TECHNOLOGY, AMT 2013
ISSN: 0302-9743
Year: 2013
Volume: 8210
Page: 136-145
Language: English
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: