Indexed by:
Abstract:
Locality preserving projection (LPP) is a widely used linear dimensionality reduction method, which preserves the locality structure of the original data. Motivated by the fact that kernel technique can capture nonlinear similarity of features and help to improve separability between nearby data points, this paper proposes locality preserving projection model based on Euler representation (named as ELPP). This model first projects the data into a complex space with Euler representation, then learns the dimensionality reduction projection with preserving locality structure in this complex space. We also extend ELPP to F-ELPP by replacing the squared F-norm with F-norm, which will weaken the exaggerated errors and be more robustness to outliers. The optimization algorithms of the two models are given, and the convergence of F-ELPP is proved. A large number of experiments on several public databases have demonstrated that the two proposed models have good robustness and feature extraction ability. (C) 2020 Elsevier Inc. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION
ISSN: 1047-3203
Year: 2020
Volume: 70
2 . 6 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:132
Cited Count:
WoS CC Cited Count: 7
SCOPUS Cited Count: 11
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: