Indexed by:
Abstract:
In order to investigate the hemodynamic effect of intervention for intracranial serial saccular aneurysm treated with semi-circular section stent, four finite element models of serial saccular aneurysms were constructed, one model without stent intervention (U-type) and three models with bare stent intervention. These stents include one with circular section (C-type), one with semi-circular section whose circular arch faces towards the aneurismal cavity (ES-type) and one with semicircular section whose circular arch faces towards the vascular center (IS-type). Computational fluid dynamics simulations of physiologically pulsatile blood flow in these models were performed. Velocity of blood flow in stented models were effectively weakened, and velocity near aneurismal wall was very low. Impact of blood flow on aneurysm was weakened because of stent intervention. Magnitude and fluctuation of wall shear stress were reduced, and the distribution of wall shear stress was more balanced. Pressure in aneurysm was almost not changed, and the pressure of stented models was slightly increased. Comparison analysis of the two aneurismal cavities demonstrated that the flow and wall shear stress were basically same, and the pressure of the distal cavity was lower than the proximal one. These results could provide some theoretical guidance to structural design of endovascular stent.
Keyword:
Reprint Author's Address:
Email:
Source :
2010 3RD INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2010), VOLS 1-7
ISSN: 1948-2914
Year: 2010
Page: 1204-1208
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: