Indexed by:
Abstract:
In this paper, we study the quasi-neutral limit for the compressible two-fluid Euler-Maxwell equations for well-prepared initial data. Precisely, we proved the solution of the three-dimensional compressible two-fluid Euler-Maxwell equations converges locally in time to that of the compressible Euler equation as E tends to zero. This proof is based on the formal asymptotic expansions, the iteration techniques, the vector analysis formulas and the Sobolev energy estimates.
Keyword:
Reprint Author's Address:
Source :
ELECTRONIC RESEARCH ARCHIVE
Year: 2020
Issue: 2
Volume: 28
Page: 879-895
0 . 8 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: