Abstract:
针对一般卷积结构无法直接提取图像的高级语义特征的问题,提出了通过编码的方式获取形状这一图像全局结构特征的方法——形状编码。形状编码包含两个步骤:第一步是将原图像转换为由显著像素点和非显著像素点组成的二值特征图;第二步是基于二值特征图中显著点对的空间位置关系进行编码。编码的结果是表征原图像的形状特征的形状编码图,可用于替代原始图像送入卷积神经网络中作为学习对象。在形状编码方法的基础上提出了两种改进编码方法,分别是动态形状编码和分块形状编码。实验证明,同时将形状编码图和原始图像送入卷积神经网络进行学习,相比只使用原始图像时可以获得更高的识别准确率。
Keyword:
Reprint Author's Address:
Email:
Source :
北京信息科技大学学报(自然科学版)
Year: 2020
Issue: 06
Volume: 35
Page: 1-7
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: