• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhao, Yongsheng (Zhao, Yongsheng.) (Scholars:赵永胜) | Wu, Hongchao (Wu, Hongchao.) | Yang, Congbin (Yang, Congbin.) | Liu, Zhifeng (Liu, Zhifeng.) (Scholars:刘志峰) | Cheng, Qiang (Cheng, Qiang.) (Scholars:程强)

Indexed by:

EI Scopus SCIE

Abstract:

The stiffness and damping modeling of joint surfaces are important for analyzing the dynamic characteristics of bolted joints, which has a great influence on the working precision of the machine tool. In this paper, a damping model is presented to predict the tangential damping of the joint accurately. The fractal theory is introduced to characterize the rough contact surface by using fractal dimension D and fractal roughness parameter G. For each micro-contact, the contact region can be divided into stick section and slip one. The energy dissipation of the micro-contact, which can be described as the tangential damping of bolted joint, emerges in the slip section. The physics-based friction coefficient is introduced to define the energy dissipation function based on the relationship between the deformation of micro-contact and the normal pressure. The energy dissipation factor and the proportional damping of the micro-contact can be obtained. The total tangential damping of bolted joint can be obtained by integrating the whole contact surfaces. Experimental set-up is designed to verify the proposed model. Compared with the constant friction coefficient damping model, the results show that the proposed model can more accurately describe the tangential damping of bolted joint. © 2021, Korean Society for Precision Engineering.

Keyword:

Machine tools Bolts Fractal dimension Damping Bolted joints Friction Energy dissipation

Author Community:

  • [ 1 ] [Zhao, Yongsheng]Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Wu, Hongchao]Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Yang, Congbin]Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Liu, Zhifeng]Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Cheng, Qiang]Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing; 100124, China

Reprint Author's Address:

  • [yang, congbin]beijing key laboratory of advanced manufacturing technology, beijing university of technology, beijing; 100124, china

Show more details

Related Keywords:

Related Article:

Source :

International Journal of Precision Engineering and Manufacturing

ISSN: 2234-7593

Year: 2021

Issue: 5

Volume: 22

Page: 865-875

1 . 9 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:87

JCR Journal Grade:3

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count: 6

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 5

Online/Total:1593/10544180
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.