• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Chen, C. Q. (Chen, C. Q..) | Diao, Y. H. (Diao, Y. H..) | Zhao, Y. H. (Zhao, Y. H..) (Scholars:赵耀华) | Wang, Z. Y. (Wang, Z. Y..) (Scholars:王智勇) | Wang, T. Y. (Wang, T. Y..) | Liang, L. (Liang, L..) | Zhang, Y. B. (Zhang, Y. B..)

Indexed by:

EI Scopus SCIE

Abstract:

Phase change thermal storage units (TSUs) that use air as heat transfer fluid (HTF) are in huge demand in the fields of building heating, solar energy utilization, and flue gas heat recovery. Researchers have developed various air-based TSUs and used different methods to optimize their structure. In the current study, the structural parameters of a novel TSU with air as the HTF are optimized using a comprehensive method that combines overall thermal resistance analysis and numerical simulation. The influence of different HTF injection methods on the natural convection of a phase change material (PCM) and the effects of different structural parameters on the TSU's charge performance were investigated. Results indicated that the heat transfer thermal resistance of the developed TSU is mostly concentrated in the PCM side. When the depth direction of the flat tube was perpendicular to the direction of gravity and the HTF adopted side injection, the phase change completion time was shortened by 20.59% compared with that in the original TSU. Thermal resistance balance was achieved in the air and PCM sides when the rib height, pitch, and thickness of the flat tube were 0.03, 0.0232, and 0.00025 m, respectively. At this moment, the compact factor and effectiveness of the novel TSU were 1.63 times and 10.52% higher than those of the original TSU, respectively.

Keyword:

Phase change thermal storage unit Air Multichannel flat tube Numerical simulation Optimization

Author Community:

  • [ 1 ] [Chen, C. Q.]Beijing Univ Technol, Beijing Key Lab Green Built Environm & Efficient, Beijing 100124, Peoples R China
  • [ 2 ] [Diao, Y. H.]Beijing Univ Technol, Beijing Key Lab Green Built Environm & Efficient, Beijing 100124, Peoples R China
  • [ 3 ] [Zhao, Y. H.]Beijing Univ Technol, Beijing Key Lab Green Built Environm & Efficient, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Z. Y.]Beijing Univ Technol, Beijing Key Lab Green Built Environm & Efficient, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, T. Y.]Beijing Univ Technol, Beijing Key Lab Green Built Environm & Efficient, Beijing 100124, Peoples R China
  • [ 6 ] [Liang, L.]Beijing Univ Technol, Beijing Key Lab Green Built Environm & Efficient, Beijing 100124, Peoples R China
  • [ 7 ] [Zhang, Y. B.]Beijing Univ Technol, Beijing Key Lab Green Built Environm & Efficient, Beijing 100124, Peoples R China

Reprint Author's Address:

  • [Diao, Y. H.]Beijing Univ Technol, Beijing Key Lab Green Built Environm & Efficient, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

JOURNAL OF ENERGY STORAGE

ISSN: 2352-152X

Year: 2021

Volume: 37

9 . 4 0 0

JCR@2022

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 8

SCOPUS Cited Count: 7

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 5

Online/Total:511/10596312
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.