• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Jin, Liu (Jin, Liu.) (Scholars:金浏) | Xia, Hai (Xia, Hai.) | Jiang, Xuan-Ang (Jiang, Xuan-Ang.) | Du, Xiu-Li (Du, Xiu-Li.) (Scholars:杜修力)

Indexed by:

EI Scopus CSCD

Abstract:

The shear-span ratio has an important influence on the crack development and on the failure mode of reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP). However, there were few studies on the effects of its shear strength and size effect. A mechanical analysis model for shear failure of reinforced concrete beams strengthened with CFRP was established by using three-dimensional numerical meso-scale simulation method, considering the meso-heterogeneity of the concrete and the interaction between the CFRP and concrete. Based on the verification of the rationality of the meso-scale method, the influence mechanism and law of the shear-span ratio on the shear failure and size effect of CFRP-strengthened RC beams were simulated and analyzed. The results show that: the shear-span ratio has a great influence on the shear failure mode of the strengthened beam, and the larger the shear-span ratio, the closer the beam is to the cable-stayed failure with better ductility. The shear-span ratio had better shear capacity for CFRP-strengthened beams and the influence on the size effect of shear strength was small. The shear-span ratio has a greater influence on the CFRP shear contribution in the strengthened beam. The larger the shear-span ratio, the better the shear effect of CFRP on strengthened beams. The beam reinforcement effect of the shear-span ratio (λ = 2.5) is most effective. Copyright ©2021 Engineering Mechanics. All rights reserved.

Keyword:

Graphite fibers Shear flow Size determination Failure (mechanical) Numerical methods Concrete construction Fiber reinforced concrete Concrete beams and girders Carbon fiber reinforced plastics

Author Community:

  • [ 1 ] [Jin, Liu]The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Xia, Hai]The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Jiang, Xuan-Ang]The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Du, Xiu-Li]The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing; 100124, China

Reprint Author's Address:

  • 杜修力

    [du, xiu-li]the key laboratory of urban security and disaster engineering, beijing university of technology, beijing; 100124, china

Show more details

Related Keywords:

Source :

Engineering Mechanics

ISSN: 1000-4750

Year: 2021

Issue: 3

Volume: 38

Page: 50-59 and 85

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count: 16

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 4

Online/Total:831/10559680
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.