Indexed by:
Abstract:
This paper presents a new type of local and parallel multigrid method to solve semilinear elliptic equations. The proposed method does not directly solve the semilinear elliptic equations on each layer of the multigrid mesh sequence, but transforms the semilinear elliptic equations into several linear elliptic equations on the multigrid mesh sequence and some low-dimensional semilinear elliptic equations on the coarsest mesh. Furthermore, the local and parallel strategy is used to solve the involved linear elliptic equations. Since solving large-scale semilinear elliptic equations in fine space, which can be fairly time-consuming, is avoided, the proposed local and parallel multigrid scheme will significantly improve the solving efficiency for the semilinear elliptic equations. Besides, compared with the existing multigrid methods which need the bounded second order derivatives of the nonlinear term, the proposed method only requires the Lipschitz continuation property of the nonlinear term. We make a rigorous theoretical analysis of the presented local and parallel multigrid scheme, and propose some numerical experiments to support the theory. (C) 2020 IMACS. Published by Elsevier B.V. All rights reserved.
Keyword:
Reprint Author's Address:
Source :
APPLIED NUMERICAL MATHEMATICS
ISSN: 0168-9274
Year: 2021
Volume: 162
Page: 20-34
2 . 8 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
ESI HC Threshold:31
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: