Indexed by:
Abstract:
Pb0.99Nb0.02(Zr0.85Sn0.13Ti0.02)O3 (PNZST) antiferroelectric (AFE) thick films are successfully deposited on silicon-based Pt and LaNiO3 electrodes by a sol-gel method. The coexistence of ferroelectric (FE) and AFE phases are revealed in PNZST films by XRD, electric-induced hysteresis loops, dielectric, and leakage current properties. Comparing with PNZST/Pt film, larger recoverable energy density and efficiency are obtained in PNZST/LaNiO3 film due to the lower FE phase proportion. It is analyzed and demonstrated by a thermodynamic model of AFE and FE coexistence system. In addition, the fatigue behaviors of both AFE films are also affected by the proportion of the coexisting FE phase. PNZST/LaNiO3 film exhibits good fatigue resistance on energy storage even after 1010 switching cycles, which is attractive to pulsed power applications. © 2020 The American Ceramic Society
Keyword:
Reprint Author's Address:
Source :
International Journal of Applied Ceramic Technology
ISSN: 1546-542X
Year: 2021
Issue: 1
Volume: 18
Page: 154-161
2 . 1 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:116
JCR Journal Grade:2
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 6
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: