Indexed by:
Abstract:
Currently, working with partially observed functional data has attracted a greatly increasing attention, since there are many applications in which each functional curve may be observed only on a subset of a common domain, and the incompleteness makes most existing methods for functional data analysis ineffective. In this paper, motivated by the appealing characteristics of conditional quantile regression, the authors consider the functional linear quantile regression, assuming the explanatory functions are observed partially on dense but discrete point grids of some random subintervals of the domain. A functional principal component analysis (FPCA) based estimator is proposed for the slope function, and the convergence rate of the estimator is investigated. In addition, the finite sample performance of the proposed estimator is evaluated through simulation studies and a real data application.
Keyword:
Reprint Author's Address:
Source :
JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY
ISSN: 1009-6124
Year: 2021
Issue: 1
Volume: 35
Page: 313-341
2 . 1 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
ESI HC Threshold:31
JCR Journal Grade:4
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: