Indexed by:
Abstract:
为了使快速区域卷积神经网络(faster region-based convolutional neural network, Faster R-CNN)适用于小尺寸结构缝隙目标检测的应用,提出了一种基于Faster R-CNN的缝隙检测与提取算法,保留了小尺寸结构目标的细节信息,并提升了检测准确率.该算法分为缝隙检测和缝隙提取2个阶段.首先,在faster R-CNN的目标检测框架下,选取ImageNet数据集上的视觉几何组(visual geometry group, VGG)网络预训练模型作为特征提取网络,调整网络模型使其适应具有小尺寸结构的缝隙目标,并通过缝隙检测网络的训练确定最优的网...
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
Year: 2021
Issue: 02
Volume: 47
Page: 135-146
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 19
Affiliated Colleges: