Indexed by:
Abstract:
In this paper, a semantic model - IISM (image internal semantic model) is introduced. Unlike other semantic extracting methods, IISM extracts the semantic information not by image segmentation and image understanding, but by analyzing relevance feedback image retrieval results. For relevance feedback image retrieval system, the images relevant to query are pointed as positive example, otherwise the images irrelevant to query are pointed as negative examples. It is assumed that these positive examples are related in semantic content. IISM computes comprehensive pair-wise mutual information for all images through analyzing the results of relevance feedback image retrieval. An association with a high mutual information means that one image is semantically associated with another. Semantic retrieval and clustering is carried out based on these association relationships.
Keyword:
Reprint Author's Address:
Email:
Source :
WIC INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, PROCEEDINGS
Year: 2003
Page: 528-531
Language: English
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: