Indexed by:
Abstract:
Brain network classification has attracted increasing attention with the widespread application in the automatic diagnosis of brain diseases. However, limited by the higher cost of detecting and marking for medical imaging, the amount of brain network data is usually small, which largely restricts the performance of current brain network classification models. In this paper, we propose a new sparse data augmentation model (SDAM) based on EncoderForest to effectively enhance the brain network data and improve the classification performance. The EncoderForest based SDAM uses a generator which innovatively encodes the rules of a set of parallel decision trees to generate sparse data with only discriminative connections. The generated data expands the original data set effectively by utilizing the advantages of EncoderForest in learning data feature sparsely and constructing a feature association generation model compactly. In addition, the SDAM is flexible to combine with different classification models, such as random forest, support vector machine, deep neural network, etc. The experimental results on three common brain disease data sets show that our model is able to reasonably augment the brain network data and remarkably improve the performance of various classifiers.
Keyword:
Reprint Author's Address:
Email:
Source :
APPLIED INTELLIGENCE
ISSN: 0924-669X
Year: 2021
Issue: 4
Volume: 52
Page: 4317-4329
5 . 3 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:87
JCR Journal Grade:2
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: