Indexed by:
Abstract:
针对城市污水处理过程数据存在噪声和缺失的问题,提出一种基于改进型支持向量机(improved support vector machine, ISVM)的异常数据清洗方法.首先,设计一种基于密度估计的噪声数据检测方法,实现对污水噪声数据甄别与剔除.其次,建立一种基于ISVM的缺失数据补偿模型,对缺失数据进行非线性拟合,获得数据缺失时刻的补偿值.最后,运用粒子群优化(particle swarm optimization, PSO)算法更新ISVM参数,提高缺失数据的补偿精度.将该清洗方法应用于城市污水处理过程中,实验结果表明,基于ISVM的异常数据清洗方法能够实现对异常数据的剔除以及缺失数据的...
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
Year: 2021
Issue: 09
Volume: 47
Page: 1011-1020
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12