• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Ma, Li (Ma, Li.) (Scholars:李明爱) | Yao, Minghui (Yao, Minghui.) | Zhang, Wei (Zhang, Wei.) | Cao, Dongxing (Cao, Dongxing.) (Scholars:曹东兴)

Indexed by:

EI Scopus SCIE

Abstract:

Due to strong nonlinear, unsteady characteristics and the fluid-structure interaction effect, vibration analysis of blades under the excitation of the airflow is still one of the technical difficulties. In this paper, the accurate subsonic aerodynamic force is obtained through numerical simulation, and the aerodynamic coupling model of the rotary blade is established. The distribution of the aerodynamic force of the compressor blade under the unsteady airflow is focused on. The blade is modeled as presetting a presetting pre-twisted rotary cantilever plate. Dynamic frequencies of the plate, calculated by Chebyshev-Ritz method, are compared with frequencies calculated using the finite element method (FEM). Effects of different parameters on natural frequencies of the rotary plate are discussed. Based on von-Karman nonlinear geometric relation and the first-order shear deformation theory, nonlinear dynamic equations of the pre-twisted rotary plate under the combination of the centrifugal force and the aerodynamic are derived by utilizing Hamilton's principle. Second-order ordinary differential equations are derived by applying the Galerkin method. Analytical solution of the dynamic deformation of the plate is presented and is compared with that produced by FEM. Results indicate the accuracy of the explicit presentation of the aerodynamic of the low-pressure compressor blade. Effects of the rotary speed, the thickness, the pre-twisted angle and the presetting angle on vibration characteristics of the warping blade are studied. Mode shape shift and frequency loci veering are discussed.

Keyword:

subsonic aerodynamic force Dynamic characteristics Chebyshev-Ritz method warping of the cross-section

Author Community:

  • [ 1 ] [Ma, Li]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 2 ] [Yao, Minghui]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Wei]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 4 ] [Cao, Dongxing]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 姚明辉

    [Yao, Minghui]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

INTERNATIONAL JOURNAL OF APPLIED MECHANICS

ISSN: 1758-8251

Year: 2020

Issue: 8

Volume: 12

3 . 5 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:115

Cited Count:

WoS CC Cited Count: 1

SCOPUS Cited Count: 2

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

Online/Total:743/10729204
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.