Indexed by:
Abstract:
This study presents an innovative mainstream Anammox based on multiple NO2--N supplement pathways to treat actual mature landfill leachate over 180 days. Desirable effluent quality of 11.8 mg/L total nitrogen (TN) and nitrogen removal efficiency of 98.8% were achieved despite fluctuation conditions of 1.5-fold influent substrates and 8.0-fold dissolved oxygen overload. Nitrogen mass balance confirmed Anammox was the dominant nitrogen removal pathway, contributing up to 87.9%. Functional genes of ammonia monooxygenase (amoA), hydrazine synthase (hzsB), and ratio of nitrate/nitrite reductase were highly detected. Anammox genera, Candidatus_Kuenenia (4.1%) and Candidatus_Brocadia (5.3%) were dominant in two functional systems, respectively, due to the different affinity of nitrite, oxygen, and organic carbon. As an economical and sustainable technology, the innovative process enabled a 95.1% decrease in organic carbon demand, a 61.5% reduction in aeration energy consumption, and 77.6% lower biomass production compared with traditional nitrification-denitrification process.
Keyword:
Reprint Author's Address:
Email:
Source :
BIORESOURCE TECHNOLOGY
ISSN: 0960-8524
Year: 2021
Volume: 340
1 1 . 4 0 0
JCR@2022
ESI Discipline: BIOLOGY & BIOCHEMISTRY;
ESI HC Threshold:84
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 22
SCOPUS Cited Count: 27
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: