Indexed by:
Abstract:
Although transition-metal-based phosphides as cost-effective catalysts have great potential for transforming water to hydrogen, their electrocatalytic property for industrial application is still limited. Herein, we focus on developing amorphous NiCoP with dandelion-like arrays anchored on nanowires through a universal strategy of hydrothermal and phosphorization. The hierarchical structure features in larger catalytic surface areas expedited reaction kinetics and improved structural stability. Benefiting from these merits, the NiCoP reaches 10 mA cm(-2) at an overpotential of mere 57 mV for a hydrogen evolution reaction in standard solution. Also, a profound activity for the generation of oxygen is along with it, which requires 276 mV to attain 10 mA cm(-2). Moreover, it demonstrates satisfying durability for both processes.
Keyword:
Reprint Author's Address:
Email:
Source :
ACS OMEGA
ISSN: 2470-1343
Year: 2021
Issue: 41
Volume: 6
Page: 26822-26828
4 . 1 0 0
JCR@2022
JCR Journal Grade:2
Cited Count:
WoS CC Cited Count: 8
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: