Indexed by:
Abstract:
To satisfy the requirement for martensite stainless steel layers with high efficiency, an optimized FeNiCrMo alloy layer was prepared using the laser cladding technique. The microstructure and frictional wear behavior of the cladding layer (a single layer with a thickness exceeding 2 mm) were investigated. The results confirmed a homogeneous thickness and crack-free character of the cladding layer. In the microstructure, equiaxed, dendritic and cellular grains were distributed along the thickness direction, and martensite and Cr/Mo-rich ferrite were observed in the dendritic and inter-dendritic regions, respectively. The frictional coefficient and wear volume of the cladding layer increased under increasing applied loads in a block-on-ring wear test, and the wear mechanism was dominated by abrasive and oxidative wear types. Under higher loads, adhesive wear prevailed. In a ball-on-disc wear test, increasing the temperature decreased the frictional coefficient and increased the wear volume. Oxidative and fatigue wear dominated the wear mechanism under this condition.
Keyword:
Reprint Author's Address:
Email:
Source :
ACTA METALLURGICA SINICA
ISSN: 0412-1961
Year: 2021
Issue: 10
Volume: 57
Page: 1291-1298
2 . 3 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:116
JCR Journal Grade:3
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 6
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: