• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Yu, Qiang (Yu, Qiang.) | Lu, Yuanwei (Lu, Yuanwei.) (Scholars:鹿院卫) | Zhang, Xiaopan (Zhang, Xiaopan.) | Yang, Yanchun (Yang, Yanchun.) | Zhang, Cancan (Zhang, Cancan.) | Wu, Yuting (Wu, Yuting.) (Scholars:吴玉庭)

Indexed by:

EI Scopus SCIE

Abstract:

The purpose of this investigation is to find and prepare novel heat storage materials to meet the requirement of Concentrating Solar Power (CSP) system. This paper focuses on the formulation, fabrication and characterization of a novel molten salt nanocomposite for high-temperature heat energy storage. The molten salt nanocomposite is based on eutectic quaternary salt, and two different concentrations of SiO2 and TiO2 nanoparticles are added to improve its specific heat capacity and thermal conductivity by microwave method. Concerning the material characterization, a suite of techniques was used, including simultaneous thermal analysis (STA) and laser flash analysis (LFA). The consequences demonstrate that the melting point and latent heat of molten salt nano composites can be reduced by adding two different concentrations of nanoparticles at the same time. The specific heat is 28.1% higher than that of the pure quaternary salt, and 6.3% and 9.8% higher than that of adding SiO2 and TiO2 nanoparticles separately when adding 0.1 wt% SiO2 and 0.9 wt% TiO2 nanoparticles to the quaternary nitrate. Compared with pure quaternary salt, the thermal conductivity of the molten salt nanocomposites increased by 53.7%, which was 16.8% and 6.3% higher than that of adding SiO2 and TiO2 nanoparticles separately. Upon inspection with scanning electron microscopy, a high-density nanostructure and heat transfer channel were observed, which appear to be the reason for the enhancement of specific heat and thermal conductivity of the material. Finally, the molten salt nanocomposite has a broad application prospects in high temperature thermal storage system.

Keyword:

Thermal conductivity Thermal energy storage Nanocomposite Specific heat Molten salt

Author Community:

  • [ 1 ] [Yu, Qiang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 2 ] [Lu, Yuanwei]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Xiaopan]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 4 ] [Yang, Yanchun]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Cancan]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 6 ] [Wu, Yuting]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 鹿院卫

    [Lu, Yuanwei]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

SOLAR ENERGY MATERIALS AND SOLAR CELLS

ISSN: 0927-0248

Year: 2021

Volume: 230

6 . 9 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:116

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 28

SCOPUS Cited Count: 30

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Online/Total:356/10625728
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.