Indexed by:
Abstract:
Data collected from industrial sites commonly contains outliers or noise that obey unknown distributions, making it challenging to establish an accurate data-driven model. Therefore, this paper proposes a novel robust stochastic configuration network based on a Student's-t mixture distribution (termed as SM-RSC). Firstly, a stochastic configuration algorithm is employed to determine the number of hidden nodes, the input weights and biases. Secondly, the maximum a posteriori (MAP) estimate is used to evaluate the output weights of the SCN learner model under the assumption that outliers or noises obey the Student's-t mixture distribution. Because the output weights cannot be solved directly due to the unknown hyper-parameters of the mixture distribution, we apply the well-known expectation-maximization (EM) algorithm for optimizing the hyper-parameters of the mixture distribution and update the output weights iteratively. The proposed algo-rithm is evaluated by a function approximation, four benchmark datasets, and a case study on industrial data modelling for a waste incineration process. The results show that SM-RSC performs favorably compared with other methods.(c) 2022 Elsevier Inc. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
INFORMATION SCIENCES
ISSN: 0020-0255
Year: 2022
Volume: 607
Page: 493-505
8 . 1
JCR@2022
8 . 1 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:46
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 27
SCOPUS Cited Count: 33
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: