• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhou, Wenbin (Zhou, Wenbin.) | Han, Dongmei (Han, Dongmei.) | Xia, Guodong (Xia, Guodong.) (Scholars:夏国栋)

Indexed by:

EI Scopus SCIE

Abstract:

The dramatic development in electronics results in an increasing cooling challenge. Nucleate pool boiling, as an efficient phase-change heat transfer technology without external energy consumption, is highly promising for sustainable high-heat-flux dissipation. To facilitate the design of boiling surfaces, an explicit understanding of effects of further reinforcements in the solid-liquid interaction on nucleate boiling over superhydrophilic surfaces is urgently desired. Whereas, it is considerably difficult to implement the relevant study and elucidate the underlying mechanism by current experimental approaches. Here, utilizing molecular dynamics simulations, effects of solid-liquid interactions on nucleate boiling over superhydrophilic surfaces are quantitatively illustrated. Our results manifest that, even for superhydrophilic surfaces, the bubble nucleation, growth and critical-heat-flux in nanoscale sense can be still strikingly enhanced with the improvement of solid-liquid interaction. Attractively, an optimal interaction energy coefficient (alpha = 1.5) for achieving maximal boiling enhancement is obtained in this study. The enhanced mechanism is elaborated by the heat transfer efficiency at the solid-liquid interface and energy barrier for phase-change. Additionally, it is found that conducting separate energy analyses for different liquid layers near the substrate is vital to reveal microscopic mechanisms thoroughly. This study provides significant guidance towards surface design in state-of-the-art thermal management systems.

Keyword:

Boiling enhancement Potential energy barrier Molecular dynamics Heat transfer efficiency Superhydrophilic Solid-liquid interactions

Author Community:

  • [ 1 ] [Zhou, Wenbin]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conser, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 2 ] [Han, Dongmei]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conser, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 3 ] [Xia, Guodong]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conser, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

APPLIED SURFACE SCIENCE

ISSN: 0169-4332

Year: 2022

Volume: 591

6 . 7

JCR@2022

6 . 7 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:66

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 29

SCOPUS Cited Count: 32

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 4

Affiliated Colleges:

Online/Total:691/10709088
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.