Indexed by:
Abstract:
A novel process was developed for real domestic wastewater and waste activated sludge (WAS) treatment based on partial denitrification, anammox-biological phosphorus removal, fermentation and partial nitrification (PDAPFPN). After 246 days of operation, the effluent concentrations of NH4+-N, NO2--N and NO3--N were below detection limits (0.1 mg/L), and the effluent concentration of PO43--P was 0.1 mg/L without the addition of external carbon source in PDA-PFPN system. Moreover, the sludge reduction efficiency reached 48.1% due to fermentation. The nitrite accumulation ratios by ammonia oxidation and nitrate reduction pathway were 60.6% and 87%, respectively. Intracellular metabolites measured by liquid chromatography mass spectrometer (LC-MS/ MS) suggested that different intracellular amino acids were stored and consumed at different duration, and intracellular Valine, Glycine and Lysine were not utilized in oxic stage. Results of flow cytometry showed that the proportion of intact cells decreased from 94.7% to 82.9%, and necrotic cells increased from 5.3% to 17.1% with the increase of DNA content in sludge supernatant and cell decay rate, indicating the occurrence of cell death and lysis and leading to WAS reduction. Analysis of transcriptional community composition revealed that partial denitrification bacteria (Thauera), anammox bacteria (Candidatus Brocadia and Candidatus Kuenenia), simultaneous phosphorus removal and fermentation bacteria (Tetrasphaera) and partial nitrification bacteria (Nitro-somonas) coexisted and actually worked in PDA-PFPN system. The novel PDA-PFPN process simultaneously achieved highly efficient nitrogen and phosphorus removal and WAS reduction without the addition of external carbon source, which greatly reduced the operation cost of carbon source dosing and WAS treatment in wastewater treatment.
Keyword:
Reprint Author's Address:
Email:
Source :
WATER RESEARCH
ISSN: 0043-1354
Year: 2022
Volume: 217
1 2 . 8
JCR@2022
1 2 . 8 0 0
JCR@2022
ESI Discipline: ENVIRONMENT/ECOLOGY;
ESI HC Threshold:47
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 47
SCOPUS Cited Count: 56
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: