Indexed by:
Abstract:
Precast concrete deck panels (PCDPs) are gradually applied in accelerated bridge construction (ABC) to achieve the goal of the fully prefabricated bridge. The joints between PCDPs are vulnerable under complicated stress state. The mechanical properties, feasibility of construction, and durability of joints are the focus to be investigated. This study proposed an innovative joint for PCDPs with high performance materials, including ultra-high performance concrete (UHPC) and carbon fiber-reinforced polymer (CFRP). The shear behavior of the novel joint was investigated on full-scale PCDPs via the static monotonic experiment. In addition, the 3D finite element numerical models were established to study the shear behavior, failure mechanism and influencing parameters of the proposed joints in PCDPs. Furthermore, the analytical models to predict the shear capacity of the proposed joints were developed. The results show that the proposed joints exhibit more reasonable failure mode and possess superior deformation ability compared to conventional joints. The initial stress and anchorage distance of CFRP tendons have obvious effect on the shear capacity. The proposed analytical model is able to accurately evaluate the shear capacity of the high performance joints for PCDPs. This study offers a novel joint type and provides guidance for the design of PCDPs.
Keyword:
Reprint Author's Address:
Email:
Source :
ENGINEERING STRUCTURES
ISSN: 0141-0296
Year: 2022
Volume: 261
5 . 5
JCR@2022
5 . 5 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:49
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 12
SCOPUS Cited Count: 15
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: