• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Jin, Liu (Jin, Liu.) | Liu, Kaixin (Liu, Kaixin.) | Zhang, Renbo (Zhang, Renbo.) | Yu, Wenxuan (Yu, Wenxuan.) | Du, Xiuli (Du, Xiuli.) | Deng, Xiaofang (Deng, Xiaofang.)

Indexed by:

EI Scopus SCIE

Abstract:

Concrete structures in extremely cryogenic environments may be subject to dynamic loadings as a result of occasional accidents or terrorist attacks during the service life. Considering the cryogenic temperature effect and strain rate effect of each phase for concrete, a meso-scale numerical model of the concrete subjected to cryogenic temperature and dynamic loadings was presented in this study, which serves as a preliminary foundation for calculating and evaluating the performances of concrete structures at cryogenic temperature. Taking concrete cube as an example, the dynamic compressive behavior and strain rate effect of concrete specimens at cryogenic temperature from 20 degrees C to -160 degrees C were modelled and investigated. The numerical results indicate that the failure appearances and compressive strength are highly related to the cryogenic temperature and dynamic loadings. The compressive strength at cryogenic temperature is greater than that at ambient temperature, and the sensitivity of dynamic compressive strength to strain rate is enhanced at cryogenic temperature. Moreover, the absorbed energy and dynamic elastic modulus tend to increase with the decrease of temperature and increase of strain rate. According to the numerical results, an empirical formula on dynamic increase factor of compressive strength at cryogenic temperatures (CDIF (T) ) was established.

Keyword:

Concrete cryogenic temperature meso-scale simulation dynamic compressive behavior strain rate effect

Author Community:

  • [ 1 ] [Jin, Liu]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China
  • [ 2 ] [Liu, Kaixin]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China
  • [ 3 ] [Zhang, Renbo]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China
  • [ 4 ] [Yu, Wenxuan]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China
  • [ 5 ] [Du, Xiuli]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China
  • [ 6 ] [Deng, Xiaofang]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

INTERNATIONAL JOURNAL OF DAMAGE MECHANICS

ISSN: 1056-7895

Year: 2022

Issue: 9

Volume: 31

Page: 1396-1419

4 . 2

JCR@2022

4 . 2 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:49

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 7

SCOPUS Cited Count: 7

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 13

Affiliated Colleges:

Online/Total:821/10600900
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.