• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Qie, Xiaohan (Qie, Xiaohan.) | Kang, Cunfeng (Kang, Cunfeng.) | Zong, Guanchen (Zong, Guanchen.) | Chen, Shujun (Chen, Shujun.) (Scholars:陈树君)

Indexed by:

EI Scopus SCIE

Abstract:

In this study, a Back Propagation (BP) neural network algorithm based on Genetic Algorithm (GA) optimization is proposed to plan and optimize the trajectory of a redundant robotic arm for the upper limb rehabilitation of patients. The feasibility of the trajectory was verified by numerical simulations. First, the collected dataset was used to train the BP neural network optimized by the GA. Subsequently, the critical points designated by the rehabilitation physician for the upper limb rehabilitation were used as interpolation points for cubic B-spline interpolation to plan the motion trajectory. The GA optimized the planned trajectory with the goal of time minimization, and the feasibility of the optimized trajectory was analyzed with MATLAB simulations. The planned trajectory was smooth and continuous. There was no abrupt change in location or speed. Finally, simulations revealed that the optimized trajectory reduced the motion time and increased the motion speed between two adjacent critical points which improved the rehabilitation effect and can be applied to patients with different needs, which has high application value.

Keyword:

trajectory planning upper limb rehabilitation robotic arm genetic algorithm back propagation neural network

Author Community:

  • [ 1 ] [Qie, Xiaohan]Beijing Univ Technol, Dept Mat & Mfg, Beijing 100124, Peoples R China
  • [ 2 ] [Kang, Cunfeng]Beijing Univ Technol, Dept Mat & Mfg, Beijing 100124, Peoples R China
  • [ 3 ] [Zong, Guanchen]Beijing Univ Technol, Dept Mat & Mfg, Beijing 100124, Peoples R China
  • [ 4 ] [Chen, Shujun]Beijing Univ Technol, Dept Mat & Mfg, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

SENSORS

Year: 2022

Issue: 11

Volume: 22

3 . 9

JCR@2022

3 . 9 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

ESI HC Threshold:53

JCR Journal Grade:2

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 19

SCOPUS Cited Count: 26

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 9

Affiliated Colleges:

Online/Total:428/10632984
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.