• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Liu, Shuailing (Liu, Shuailing.) | Ma, Guoyuan (Ma, Guoyuan.) (Scholars:马国远) | Jia, Xiaoya (Jia, Xiaoya.) | Xu, Shuxue (Xu, Shuxue.) | Wu, Guoqiang (Wu, Guoqiang.)

Indexed by:

EI Scopus SCIE

Abstract:

A mechanically-driven loop heat pipe heat rec?overy system by booster and refrigerant pump was proposed to match the all-year fresh air load varying greatly with ambient temperature in an energy recovery ventilation unit and enhance its energy-saving potentials. The system prototype was developed and the experimental setup established in which the booster and pump can operate together or separately. Namely, the prototype could be running in pump-driven loop heat pipe (PLHP) mode, booster-driven loop heat pipe (BLHP) mode or booster combining with pump-driven loop heat pipe (CLHP) mode. The heat transfer characteristics of the prototype running in these three modes under winter and summer conditions were studied, respectively. The results showed that the temperature effectiveness of CLHP was greater than that of PLHP or BLHP under all-year conditions. When outdoor temperature is -15 ?degrees C, the temperature effectiveness of CLHP is 78.0% and 52.5% higher than that of PLHP and BLHP, respectively, and the heating EER of CLHP is 29.6% higher than that of BLHP. When outdoor temperature is 40 ?degrees C, the CLHP has 19.5% higher of temperature effectiveness and 21.7% higher of cooling EER comparing with the BLHP, respectively. In winter, BLHP performs better when outdoor temperature is greater than 7.5 ?degrees C while CLHP performs better when outdoor temperature is lower than 7.5 ?degrees C. And BLHP has better performance when outdoor temperature is lower than 35 ?degrees C in summer while CLHP performs better when outdoor temperature is higher than 35 ?degrees C. The composite system can switch its operating mode according to the fresh air load, which can improve effectively the year-round performance of the system to recover heat in building ventilation.

Keyword:

Heat pipe Heat recovery Refrigerant pump Ventilation Booster

Author Community:

  • [ 1 ] [Liu, Shuailing]Beijing Univ Technol, Dept Refrigerat & Cryogen Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Ma, Guoyuan]Beijing Univ Technol, Dept Refrigerat & Cryogen Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Jia, Xiaoya]Beijing Univ Technol, Dept Refrigerat & Cryogen Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Xu, Shuxue]Beijing Univ Technol, Dept Refrigerat & Cryogen Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Wu, Guoqiang]Beijing Univ Technol, Dept Refrigerat & Cryogen Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

APPLIED THERMAL ENGINEERING

ISSN: 1359-4311

Year: 2022

Volume: 207

6 . 4

JCR@2022

6 . 4 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:49

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 18

SCOPUS Cited Count: 18

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 9

Affiliated Colleges:

Online/Total:601/10701125
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.