• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Xu, Guojing (Xu, Guojing.) | Lu, Hao (Lu, Hao.) | Guo, Kai (Guo, Kai.) | Tang, Fawei (Tang, Fawei.) | Song, Xiaoyan (Song, Xiaoyan.) (Scholars:宋晓艳)

Indexed by:

Scopus SCIE

Abstract:

Based on a home-built Sm-Co-based alloys database, this work proposes a support vector machine model to study the concurrent effects of element doping and microstructure scale on the phase constitution of SmCo7-based alloys. The results indicated that the doping element's melting point and electronegativity difference with Co are the key features that affect the stability of the 1:7 H phase. High-throughput predictions on the phase constitution of SmCo7-based alloys with various characteristics were achieved. It was found that doping elements with electronegativity differences with Co that are smaller than 0.05 can significantly enhance 1:7 H phase stability in a broad range of grain sizes. When the electronegativity difference increases to 0.4, the phase stability becomes more dependent on the melting point of the doping element, the doping concentration, and the mean grain size of the alloy. The present data-driven method and the proposed rule for 1:7 H phase stabilization were confirmed by experiments. This work provides a quantitative strategy for composition design and tailoring grain size to achieve high stability of the 1:7 H phase in Sm-Co-based permanent magnets. The present method is applicable for evaluating the phase stability of a wide range of metastable alloys.

Keyword:

composition design machine learning grain size permanent magnets phase stability

Author Community:

  • [ 1 ] [Xu, Guojing]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 2 ] [Lu, Hao]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 3 ] [Guo, Kai]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 4 ] [Tang, Fawei]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 5 ] [Song, Xiaoyan]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

NANOMATERIALS

Year: 2022

Issue: 9

Volume: 12

5 . 3

JCR@2022

5 . 3 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:66

JCR Journal Grade:1

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count: 3

SCOPUS Cited Count: 3

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

Affiliated Colleges:

Online/Total:1278/10847395
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.