• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Tang, Zhenyun (Tang, Zhenyun.) (Scholars:唐贞云) | Dong, Yue (Dong, Yue.) | Liu, Hao (Liu, Hao.) | Li, Zhenbao (Li, Zhenbao.)

Indexed by:

EI Scopus SCIE

Abstract:

Tuned liquid damper (TLD) is a typical passive device to control structural response under wind and earthquake excitation. At present, TLD is often used to control single-mode of structure. Hence, the design theory of TLD is often based on single-degree of freedom (SDOF) system in frequency domain, which is hard to accurately evaluate seismic performance of TLD-installed multi-degree of freedoms (MDOFs) with consideration of higher mode. In this work, a frequency domain transfer function for TLD controlled MDOFs system is established through the concept of substructure to evaluate overall seismic performance of TLD-installed MDOFs. The accuracy of the transfer function is verified by real-time hybrid testing. Using this transfer function, the effect of TLD on the seismic performance of MDOFs was discussed in frequency domain by parametric analysis. The analytical results indicated that, based on the design theory for single-mode, the TLD with large mass ratio cannot enhance the seismic performance effectively comparing with small mass ratio. In order to improve the control efficiency of relatively large mass TLD, a design method for multi-mode control is established based on the developed frequency domain transfer function. The simulation results showed that, with same TLD mass, the multi-mode method performed smaller structural acceleration response and similar displacement response relative to the single mode method.

Keyword:

Multi-degree of freedoms Seismic performance Frequency domain analysis Tuned liquid damper Multi-mode control

Author Community:

  • [ 1 ] [Tang, Zhenyun]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Dong, Yue]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Hao]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Zhenbao]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

JOURNAL OF BUILDING ENGINEERING

Year: 2022

Volume: 48

6 . 4

JCR@2022

6 . 4 0 0

JCR@2022

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 19

SCOPUS Cited Count: 22

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 4

Affiliated Colleges:

Online/Total:1120/10822650
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.