Indexed by:
Abstract:
Light-emitting lead halide perovskite materials have attracted great attention due to their excellent optoelectrical properties. However, the combination of perovskites and conjugated polymers forming an exciplex has not been reported due to the limitations of fabrication. In this work, we introduce a strategy by using an ultraviolet (UV)-polymerizable acrylic monomer to fabricate perovskite-polymer composite films in the polymer matrix. Significantly, we systematically examined the exciton dynamics in composite films by time resolved photoluminescence and transient absorption spectra. We observed the formation of an exciplex and the emission from it. The energy levels and exciton dynamics of perovskite light-emitting polymers in the composite is proved to be influenced by the photopolymer matrix and the energy levels in the polymer matrix make the charge transfer and exciplex formation feasible. Furthermore, light-emitting devices were fabricated using the composite materials as phosphors on a 395 nm UV chip. The devices illustrate excellent water-repellent properties, which can work in an aqueous atmosphere for a long time. This method provides a facile strategy for the preparation of ultrastable composites employing both perovskites and light-emitting polymers and deepens our understanding of the exciton dynamics in such composite materials. It is beneficial for the development of next-generation light-emitting devices and displays.
Keyword:
Reprint Author's Address:
Source :
JOURNAL OF MATERIALS CHEMISTRY C
ISSN: 2050-7526
Year: 2022
Issue: 22
Volume: 10
Page: 8609-8616
6 . 4
JCR@2022
6 . 4 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:66
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: