• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Guo, Yi (Guo, Yi.) | Gao, Jingfeng (Gao, Jingfeng.) (Scholars:高景峰) | Cui, Yingchao (Cui, Yingchao.) | Wang, Zhiqi (Wang, Zhiqi.) | Li, Ziqiao (Li, Ziqiao.) | Duan, Wanjun (Duan, Wanjun.) | Wang, Yuwei (Wang, Yuwei.) | Wu, Zejie (Wu, Zejie.)

Indexed by:

EI Scopus SCIE

Abstract:

The intergeneric conjugative transfer of antibiotic resistance genes (ARGs) is recognized as an important way to the dissemination of antibiotic resistance. However, it is unknown whether the extensive use of chloroxylenol (para-chloro-meta-xylenol, PCMX) in many pharmaceutical personal care products will lead to the spread of ARGs. In this study, the abilities and mechanisms of PCMX to accelerate the intergeneric conjugative transfer were investigated. Results showed that exposure of bacteria to environmental concentrations of PCMX (0.20-1.00 mg/L) can significantly stimulate the increase of conjugative transfer by 8.45-9.51 fold. The phenotypic experiments and genome-wide RNA sequencing revealed that 0.02-5.00 mg/L PCMX exposure could increase the content of alkaline phosphatase and malondialdehyde, which are characteristic products of cell wall and membrane damage. In addition, PCMX could lead to excessive production of reactive oxygen species (ROS) by 1.26-2.00 times, the superoxide dismutase and catalase produced by bacteria in response to oxidative stress were not enough to neutralize the damage of ROS, thus promoting the conjugative transfer. Gene Ontology enrichment analysis indicated that cell membrane permeability, pili, some chemical compounds transport and energy metabolism-affected conjugative transfer. This study deepened the understanding of PCMX in promoting propagation of ARGs, and provided new perspectives for use and treatment of personal care products. (c) 2021 Elsevier B.V. All rights reserved.

Keyword:

Horizontal gene transfer Chloroxylenol Reactive oxygen species Cell wall and membrane permeability Antibiotic resistance genes

Author Community:

  • [ 1 ] [Guo, Yi]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 2 ] [Gao, Jingfeng]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 3 ] [Cui, Yingchao]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Zhiqi]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Ziqiao]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 6 ] [Duan, Wanjun]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 7 ] [Wang, Yuwei]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 8 ] [Wu, Zejie]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

SCIENCE OF THE TOTAL ENVIRONMENT

ISSN: 0048-9697

Year: 2022

Volume: 816

9 . 8

JCR@2022

9 . 8 0 0

JCR@2022

ESI Discipline: ENVIRONMENT/ECOLOGY;

ESI HC Threshold:47

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 33

SCOPUS Cited Count: 42

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 8

Affiliated Colleges:

Online/Total:997/10686414
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.