Indexed by:
Abstract:
Non-invasive near-infrared spectral tomography (NIRST) can incorporate the structural information provided by simultaneous magnetic resonance imaging (MRI), and this has significantly improved the images obtained of tissue function. However, the process of MRI guidance in NIRST has been time consuming because of the needs for tissue-type segmentation and forward diffuse modeling of light propagation. To overcome these problems, a reconstruction algorithm for MRI-guided NIRST based on deep learning is proposed and validated by simulation and real patient imaging data for breast cancer characterization. In this approach, diffused optical signals and MRI images were both used as the input to the neural network, and simultaneously recovered the concentrations of oxy-hemoglobin, deoxy-hemoglobin, and water via end-to-end training by using 20,000 sets of computer-generated simulation phantoms. The simulation phantom studies showed that the quality of the reconstructed images was improved, compared to that obtained by other existing reconstruction methods. Reconstructed patient images show that the well-trained neural network with only simulation data sets can be directly used for differentiating malignant from benign breast tumors. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
Keyword:
Reprint Author's Address:
Source :
OPTICA
ISSN: 2334-2536
Year: 2022
Issue: 3
Volume: 9
Page: 264-,
1 0 . 4
JCR@2022
1 0 . 4 0 0
JCR@2022
ESI Discipline: PHYSICS;
ESI HC Threshold:41
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 19
SCOPUS Cited Count: 25
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: