• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Qu, Zhixue (Qu, Zhixue.) | Yu, Chuanjin (Yu, Chuanjin.) | Wei, Yitong (Wei, Yitong.) | Su, Xiping (Su, Xiping.) | Du, Aibing (Du, Aibing.)

Indexed by:

EI Scopus SCIE

Abstract:

Due to the complex products and irradiation-induced defects, it is hard to understand and even predict the thermal conductivity variation of materials under fast neutron irradiation, such as the abrupt degradation of thermal conductivity of boron carbide (B4C) at the very beginning of the irradiation process. In this work, the contributions of various irradiation-induced defects in B4C primarily consisting of the substitutional defects, Frenkel defect pairs, and helium bubbles were re-evaluated separately and quantitatively in terms of the phonon scattering theory. A theoretical model with an overall consideration of the contributions of all these irradiation-induced defects was proposed without any adjustable parameters, and validated to predict the thermal conductivity variation under irradiation based on the experimental data of the unirradiated, irradiated, and annealed B4C samples. The predicted thermal conductivities by this model show a good agreement with the experimental data after irradiation. The calculation results and theoretical analysis in light of the experimental data demonstrate that the substitutional defects of boron atoms by lithium atoms, and the Frenkel defect pairs due to the collisions with the fast neutrons, rather than the helium bubbles with strain fields surrounding them, play determining roles in the abrupt degradation of thermal conductivity with burnup.

Keyword:

boron carbide (B4C) fast neutron irradiation thermal conductivity

Author Community:

  • [ 1 ] [Qu, Zhixue]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 2 ] [Yu, Chuanjin]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 3 ] [Wei, Yitong]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 4 ] [Su, Xiping]China Inst Atom Energy, Beijing 102413, Peoples R China
  • [ 5 ] [Du, Aibing]China Inst Atom Energy, Beijing 102413, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Related Article:

Source :

JOURNAL OF ADVANCED CERAMICS

ISSN: 2226-4108

Year: 2022

Issue: 3

Volume: 11

Page: 482-494

1 6 . 9

JCR@2022

1 6 . 9 0 0

JCR@2022

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 25

SCOPUS Cited Count: 25

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 8

Affiliated Colleges:

Online/Total:1341/10903634
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.