• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wu, Jinzhi (Wu, Jinzhi.) | Zheng, Jianhua (Zheng, Jianhua.) | Sun, Guojun (Sun, Guojun.) | Chang, Xinquan (Chang, Xinquan.)

Indexed by:

EI Scopus SCIE

Abstract:

This paper considers the combination of cyclic and axial loads to investigate the hysteretic performance of H section 6061-T6 aluminum alloy members. The hysteretic performance of aluminum alloy members is the basis for the seismic performance of aluminum alloy structures. Despite the prevalence of aluminum alloy reticulated shells structures worldwide, research into the seismic performance of aluminum alloy structures remains inadequate. To address this deficiency, we design and conduct cyclic axial load testing of three H-section members based on a reliable testing system. The influence of slenderness ratios and bending direction on the failure form, bearing capacity, and stiffness degradation of each member are analyzed. The experiment results show that overall buckling dominates the failure mechanism of all test members before local buckling occurs. As the load increases after overall buckling, the plasticity of the member develops, finally leading to local buckling and fracture failure. The results illustrate that the plasticity development of the local buckling position is the main reason for the stiffness degradation and failure of the member. Additionally, with the increase of the slenderness ratio, the energy-dissipation capacity and stiffness of the member decrease significantly. Simultaneously, a finite element model based on the Chaboche hybrid strengthening model is established according to the experiment, and the rationality of the constitutive model and validity of the finite element simulation method are verified. The parameter analysis of twenty-four members with different sections, slenderness ratios, bending directions, and boundary conditions are also carried out. Results show that the section size and boundary condition of the member have a significant influence on stiffness degradation and energy dissipation capacity. Based on the above, the appropriate material constitutive relationship and analysis method of H-section aluminum alloy members under cyclic loading are determined, providing a reference for the seismic design of aluminum alloy structures.

Keyword:

seismic analysis numerical analysis H-section member aluminum alloy member axial cyclic loading hysteretic performance

Author Community:

  • [ 1 ] [Wu, Jinzhi]Beijing Univ Technol, Fac Architecture Civil & Transportat Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Zheng, Jianhua]Beijing Univ Technol, Fac Architecture Civil & Transportat Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Sun, Guojun]Beijing Univ Technol, Fac Architecture Civil & Transportat Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Chang, Xinquan]Beijing Univ Technol, Fac Architecture Civil & Transportat Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Wu, Jinzhi]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, MOE, Beijing 100124, Peoples R China
  • [ 6 ] [Sun, Guojun]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, MOE, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

STRUCTURAL ENGINEERING AND MECHANICS

ISSN: 1225-4568

Year: 2022

Issue: 1

Volume: 81

Page: 11-28

2 . 2

JCR@2022

2 . 2 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:49

JCR Journal Grade:3

CAS Journal Grade:4

Cited Count:

WoS CC Cited Count: 6

SCOPUS Cited Count: 2

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Affiliated Colleges:

Online/Total:583/10695408
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.