• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wu, Bin (Wu, Bin.) | Wang, Naixin (Wang, Naixin.) | Lei, Jian-Hui (Lei, Jian-Hui.) | Shen, Yue (Shen, Yue.) | An, Quan-Fu (An, Quan-Fu.) (Scholars:安全福)

Indexed by:

EI Scopus SCIE

Abstract:

Zwitterionic groups are conducive to improve the antifouling performance and water permeability of nanofiltration membranes because of the excellent hydrophilicity and charged property. However, the transport of zwitterionic monomers during interfacial polymerization process is much slower than the reaction, leading to form many defects in the separation layer. In this study, phase transfer catalysts were used to intensify the interfacial mass transfer of zwitterionic amine monomers for fabricating polyamide thin-film composite nanofiltration membranes. The transport process was explored by measuring the diffusion kinetics of monomers to regulate the structures and properties of zwitterionic membranes. Consequently, low concentration of N-aminoethyl piperazine propane sulfonate (AEPPS) as aqueous monomer could be used to prepare membranes with excellent nanofiltration performance. When the concentration of AEPPS was as low as 1 w/v%, the as-prepared zwitterionic membrane possessed a pure water flux of 10.6 L m(-2) h(-1) bar(-1) with a high erythromycin retention of 91.7% and a low NaCl retention of 7.3%, which exhibited great application potential in the separation of monovalent salt/antibiotics. Moreover, the flux recovery ratio of the zwitterionic membrane was still maintained at similar to 96.5% after undergoing twice fouling-rinse experiments of bovine serum albumin, exhibiting exceptional antifouling performance.

Keyword:

Phase transfer catalyst Monovalent salt/antibiotics separation Zwitterionic membrane Interfacial polymerization Intensification of mass transfer

Author Community:

  • [ 1 ] [Wu, Bin]Beijing Univ Technol, Dept Environm Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Naixin]Beijing Univ Technol, Dept Environm Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 3 ] [Lei, Jian-Hui]Beijing Univ Technol, Dept Environm Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 4 ] [Shen, Yue]Beijing Univ Technol, Dept Environm Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 5 ] [An, Quan-Fu]Beijing Univ Technol, Dept Environm Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

JOURNAL OF MEMBRANE SCIENCE

ISSN: 0376-7388

Year: 2021

Volume: 643

9 . 5 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

ESI HC Threshold:96

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 38

SCOPUS Cited Count: 39

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 9

Affiliated Colleges:

Online/Total:386/10633387
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.