• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Guo, Jipeng (Guo, Jipeng.) | Sun, Yanfeng (Sun, Yanfeng.) | Gao, Junbin (Gao, Junbin.) | Hu, Yongli (Hu, Yongli.) (Scholars:胡永利) | Yin, Baocai (Yin, Baocai.)

Indexed by:

EI Scopus SCIE

Abstract:

Multiview subspace clustering has been demonstrated to achieve excellent performance in practice by exploiting multiview complementary information. One of the strategies used in most existing methods is to learn a shared self-expressiveness coefficient matrix for all the view data. Different from such a strategy, this article proposes a rank consistency induced multiview subspace clustering model to pursue a consistent low-rank structure among view-specific self-expressiveness coefficient matrices. To facilitate a practical model, we parameterize the low-rank structure on all self-expressiveness coefficient matrices through the tri-factorization along with orthogonal constraints. This specification ensures that self-expressiveness coefficient matrices of different views have the same rank to effectively promote structural consistency across multiviews. Such a model can learn a consistent subspace structure and fully exploit the complementary information from the view-specific self-expressiveness coefficient matrices, simultaneously. The proposed model is formulated as a nonconvex optimization problem. An efficient optimization algorithm with guaranteed convergence under mild conditions is proposed. Extensive experiments on several benchmark databases demonstrate the advantage of the proposed model over the state-of-the-art multiview clustering approaches.

Keyword:

Learning systems low-rank matrix factorization multiview subspace clustering Complementary information rank consistency Optimization Clustering algorithms Clustering methods Sparse matrices Tensors low-rank representation (LRR) Matrix decomposition

Author Community:

  • [ 1 ] [Guo, Jipeng]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Sun, Yanfeng]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 3 ] [Hu, Yongli]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 4 ] [Yin, Baocai]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 5 ] [Gao, Junbin]Univ Sydney, Business Sch, Discipline Business Analyt, Camperdown, NSW 2006, Australia

Reprint Author's Address:

Show more details

Related Keywords:

Related Article:

Source :

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

ISSN: 2162-237X

Year: 2021

Issue: 7

Volume: 33

Page: 3157-3170

1 0 . 4 0 0

JCR@2022

ESI Discipline: COMPUTER SCIENCE;

ESI HC Threshold:87

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 25

SCOPUS Cited Count: 28

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Affiliated Colleges:

Online/Total:425/10625311
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.