Abstract:
综合考虑异质信息网络具有的复杂性和异质性的特点,提出一种异质网中基于图卷积神经网络(heterogeneous graph convolution neural network embedding,HeGCNE)的链路预测方法。针对经典图卷积神经网络逐层传递规则的不足,提出改进的逐层传递规则,对异质节点进行表征学习,融合对抗学习优化节点表征;在此基础上,利用节点的哈达玛积构造连边表征,将连边表征放入基于梯度提升树算法的二分类器,解决异质网络的链路预测问题。实验结果表明,改进后的方法可以有效提高链路预测的准确性和稳定性。
Keyword:
Reprint Author's Address:
Email:
Source :
计算机工程与设计
Year: 2022
Issue: 01
Volume: 43
Page: 150-156
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: