Indexed by:
Abstract:
The boom is the key load-bearing component of the crane, and its health seriously threatens the service performance of the crane. In order to ensure the safe production of cranes, nondestructive testing (NDT) and structural health monitoring (SHM) of boom become more and more urgent and important. In this paper, the intelligent defect location algorithm based on helical guided waves is applied to the weld defect detection of U-shaped boom. Intelligent defect location algorithm is an imaging algorithm that combines ellipse imaging principle, evolutionary algorithm and K-means clustering algorithm. This paper verifies the effectiveness of this algorithm for weld defect location of U-shaped boom through experimental research. Firstly, the propagation regularity of helical guided waves in the U-shaped boom structure is studied. In addition, the elliptical imaging algorithm is used to image and analyze the weld defects in the U-shaped boom, and the location of the defects is preliminarily determined. The defect location analysis of weld defects is carried out by using the intelligent defect location algorithm. By comparing the imaging results of the two methods, it is found that the intelligent defect location algorithm has higher resolution and can effectively improve the defect location accuracy. This algorithm provides a tool for health monitoring of special-shaped structures based on guided waves. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 2366-2557
Year: 2023
Volume: 270 LNCE
Page: 180-194
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: