Indexed by:
Abstract:
Due to the changes in soil moisture content and deformation caused by weather changes, there is a correlation between weather temperature and failures of urban water distribution pipelines. Based on the failure records of pipelines and weather temperatures of a northern China city, the correlations between different weather temperature indicators and water mains failures were analyzed. The failure prediction models of water distribution pipelines considering weather temperature factors were established using error back propagation neural network (BPNN) and genetic expression programming (GEP) methods. According to the failure records of water distribution pipelines, pipeline geographic information, and weather temperature records of the case city in the past 11 years, the correlations among pipeline failures and six weather factors were analyzed, including average temperature, freezing indicator, maximum increase, maximum decrease, maximum increase rate, and maximum decrease rate. BPNN and GEP were used to establish the implicit and explicit relationships between the number of pipeline failures (i.e., the dependent variable) and four explanatory variables (the selected weather temperature indicator, the diameter, age, and length of pipelines). The explicit and implicit models were used to predict the number of pipeline failures in the case city in the next year. The determination coefficients of the prediction results of the model without considering weather factors were 0.65 and 0.60 respectively, while those considering weather factors were 0.78 and 0.88, where the prediction accuracy increased by 13% and 28%. Therefore, it is reasonable and effective to establish a failure prediction model of water distribution pipelines by considering weather factors. Copyright ©2022 Journal of Harbin Institute of Technology.All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Harbin Institute of Technology
ISSN: 0367-6234
Year: 2022
Issue: 2
Volume: 54
Page: 8-16
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: