Indexed by:
Abstract:
Bayesian inference methods usually require numerous forward model simulations to generate converged samples. When the forward model is expensive to evaluate, it becomes a challenging problem to estimate the posterior distribution function from Bayesian inference. We propose a computationally efficient Bayesian inference method with a combination of polynomial chaos and Gibbs sampling for structural damage detection and condition assessment. The likelihood function is approximated with the polynomial chaos expansion, and the Gibbs sampling method is performed to generate the samples for the posterior distribution. In the Gibbs sampling, the forward model is not required, which reduces the computation time for Bayesian inference. The proposed Bayesian inference method is conducted to update the probability distributions of unknown structural parameters for structural condition assessment, and the observer data comprise the correlation function of the acceleration responses. The analytical formula for the correlation function of the acceleration response is also derived in this study. Both numerical studies and experimental studies were conducted to verify the accuracy and efficiency of the proposed method. The results show that the posterior distribution of unknown parameters can be successfully estimated by using the proposed method. In addition, the proposed improved Bayesian inference is robust to measurement noise. Comparison studies with the original Gibbs sampling method are presented. The results indicate that the proposed improved Bayesian inference method is about 100 times faster than the original Gibbs sampling method. © 2022 John Wiley & Sons, Ltd.
Keyword:
Reprint Author's Address:
Email:
Source :
Structural Control and Health Monitoring
ISSN: 1545-2255
Year: 2022
Issue: 6
Volume: 29
5 . 4
JCR@2022
5 . 4 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:49
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count: 17
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: