Indexed by:
Abstract:
A novel EEGNet variation based on the fusion of the Inception and attention mechanism modules was proposed, called IncepA-EEGNet, in order to achieve more efficient P300 signal feature extraction. Convolutional layers with different receptive fields were connected in parallel. The network's ability to extract and express EEG signals were enhanced. Then the attention mechanism was introduced to assign weights to the features of different filters, and important information was extracted from the P300 signal. The validation experiment was conducted on two subjects of BCI Competition III dataset II. Results showed that the IncepA-EEGNet recognition accuracy reached 75.5% after just 5 epochs compared with other deep learning models. The information transmission rate was up to 33.44 bits/min on subject B after 3 epochs. These experimental results demonstrate that the IncepA-EEGNet effectively improves the recognition accuracy of the P300 signal, reduces the time of repeated trials, and enhances the applicability of the P300 speller. Copyright ©2022 Journal of Zhejiang University (Engineering Science). All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Zhejiang University (Engineering Science)
ISSN: 1008-973X
Year: 2022
Issue: 4
Volume: 56
Page: 745-753 and 782
Cited Count:
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: