• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Lu, Dechun (Lu, Dechun.) | Song, Zhiqiang (Song, Zhiqiang.) | Wang, Guosheng (Wang, Guosheng.) | Zhou, Xin (Zhou, Xin.) | Du, Xiuli (Du, Xiuli.)

Indexed by:

EI Scopus SCIE

Abstract:

A 3D peridynamic method involving the work done by the non-conservative force is developed, whose theoretical framework comprises two parts: the viscoelastic motion equation of material points and the rate-dependent fracture criterion of the bond. For the description of motion, a viscoelastic interaction model between material points is proposed based on the understanding deformation mechanism of concrete. Further, the viscoelastic motion equation is theorized by applying Hamilton's principle which considers the energy dissipation, as a result, the viscoelastic deformation of brittle material can be captured. The elastic and viscous parameters are calibrated by the energy density equivalence between the developed 3D peridynamic method and the classical continuum mechanics under the same deformation condition. For the control of strength and cracking, the dynamic uniaxial S strength criterion is introduced into the fracture criterion of the bond so that the rate-dependent behavior of strength and cracking failure can be reflected. The function and superiority of the developed 3D peridynamic method are discussed via numerical experiments. It is found that the developed peridynamic method can reasonably reflect the influence of loading rate on the deformation, strength, and cracking of brittle material. © 2022 Elsevier Ltd

Keyword:

Brittleness Equations of motion Energy dissipation Cracks Numerical methods Viscoelasticity 3D modeling Continuum mechanics Deformation

Author Community:

  • [ 1 ] [Lu, Dechun]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Song, Zhiqiang]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Wang, Guosheng]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Zhou, Xin]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Du, Xiuli]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

Engineering Fracture Mechanics

ISSN: 0013-7944

Year: 2022

Volume: 274

5 . 4

JCR@2022

5 . 4 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:49

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 9

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 5

Online/Total:663/10583457
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.