Indexed by:
Abstract:
W-based composites with the different immiscible second phases (Cu and Cu10Sn) were prepared by laser powder bed fusion (LPBF). The immiscible W phase and Cu/α-Cu phases were prone to separate during LPBF. The melted W phase could easily fuse together and form W matrix, and Cu or α-Cu phase distributed within the gaps among W phase. Cu or α-Cu phase can provide a gradient cooling way for the solidification of W phase through the transformation of ‘solid-liquid-gas’ during LPBF. The evaporation of Cu or Sn accelerated the heat dissipation, which caused the grain refinement of W. Higher thermal conductivity of Cu than α-Cu leads to the relative finer grain size of W phase in W-Cu composite. The heat conduction direction between W phase and Cu/α-Cu also affected the grain morphology. Heat continued transferred from W to Cu/α-Cu induced the columnar grain growth of W, the interlacing distribution of W and Cu/α-Cu made the growth of W columnar grains radiate out from the center Cu/α-Cu phase. Remarkable, cracks were severely restrained in W phase simultaneously although W phase melted completely. This is not only related to improvement of strength and ductility of W caused by grain refinement, but also because of the interlacing distribution of W and Cu/α-Cu phases, which could effectively reduce the stress degree in W phase during LBPF. © 2022 Elsevier B.V.
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Alloys and Compounds
ISSN: 0925-8388
Year: 2022
Volume: 926
6 . 2
JCR@2022
6 . 2 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:66
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12
Affiliated Colleges: