• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhang, Li (Zhang, Li.) | Lan, Shuang (Lan, Shuang.) | Hao, Shiwei (Hao, Shiwei.) | Dong, Tingjun (Dong, Tingjun.) | Peng, Yongzhen (Peng, Yongzhen.) | Yang, Jiachun (Yang, Jiachun.)

Indexed by:

EI Scopus SCIE

Abstract:

The mechanisms of Fe2+ on nitrogen and phosphorus removal and functional bacterial competition in anammox systems was investigated. Under 0.12 mM Fe2+, the performance of nitrogen and phosphorus removal increased by 10.08 % and 151.91 %, respectively, compared with the control stage. Phosphorus removal was achieved through extracellular polymeric substance (EPS) induced biomineralization to form Fe-P minerals, and functional group C–O–C in EPS played a critical role. T-EPSs was the major nucleation site due to it maintaining the supersaturated state (saturation index > 0) of Fe-P minerals for a long time. Population succession showed that Fe2+ weakened the competition between heterotrophic denitrifier (Denitrasoma) and anammox microbe (Candidatus Brocadia) for space and substrates, which was favorable for the enrichment of anammox biomass. Moreover, the variation in gene abundance (such as Hao, Cyt c, and Nir) indicated that Fe2+ improved electron behaviors (generation, transport, and consumption) during the nitrogen metabolism of anammox systems. © 2022 Elsevier Ltd

Keyword:

Nitrogen removal Biomineralization Iron compounds Wastewater treatment Phosphorus Nitrogen

Author Community:

  • [ 1 ] [Zhang, Li]National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Lan, Shuang]National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Hao, Shiwei]National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Dong, Tingjun]National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Peng, Yongzhen]National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Yang, Jiachun]Shuifa Shandong Water Development, Group Co. Ltd., Shandong; 274200, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

Bioresource Technology

ISSN: 0960-8524

Year: 2022

Volume: 362

1 1 . 4

JCR@2022

1 1 . 4 0 0

JCR@2022

ESI Discipline: BIOLOGY & BIOCHEMISTRY;

ESI HC Threshold:43

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 16

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:672/10537027
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.