Indexed by:
Abstract:
The seismic performances of 28 geometrically similar concrete shear walls reinforced with basalt fiber-reinforced polymer (BFRP) bars were simulated using a mesoscale modeling approach. In the modeling, concrete heterogeneities were explicitly described, and the interaction between BFRP bars and surrounding concretes was also considered. The influences of shear depth, shear span ratio and vertical reinforcement ratio on the failure of shear walls were investigated. The simulation results indicated that with the increase of shear depth, the failure modes were basically the similar, while the nominal shear strength decreased significantly, namely, the presence of size effect was demonstrated. The shear wall would exhibit different failure modes as the shear span ratio varies. Moreover, it was found that the vertical BFRP bar presented an ignorable influence on the failure mode, while the increase of vertical reinforcement ratio would obviously improve the shear strength of BFRP-RC shear wall. Finally, the present simulated shear strengths were compared with some available size effect laws and some codes.
Keyword:
Reprint Author's Address:
Source :
ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING
ISSN: 1644-9665
Year: 2022
Issue: 1
Volume: 23
4 . 4
JCR@2022
4 . 4 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:49
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: